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Abstract

Differentiated fare pricing is amongst widely practiced Revenue Management tactics in which
an airline segments its demand into distinct fare classes. This strategy has been successfully
implemented in airline industry for more than four decades. Earlier researches have shown
that the benefits from differentiated pricing are evident for perfect market segmentation
in which there is no leakage of the demand between the market segments. However, it is
not uncommon to notice that the market segmentation is seldom prefect and regardless
of a fencing strategy, demand leakage is often experienced. Thus, in realistic situation,
demand behavior is expected to be uncertain and there will a demand leakage which will
cannibalize demand from one market segment to another. This research addresses the issue of
establishing an integrated framework to optimize the fare pricing, and seat inventory control
for an airline that experiences the demand leakage in its fare classes. Models are proposed
for an airline that experiences deterministic demand, stochastic demand, and stochastic
demand whose distribution is unknown. These models are analyzed numerically to outline
an integrated optimal control framework for fare pricing, seat inventory control decisions
for an airline. Numerical experimentation show that the proposed integrated framework
significantly improves the revenue gains for an airline, however, demand leakage between
fare classes can substantially undermine the profitability of an airline.
Keywords: Revenue Management, Airline Industry, Demand Leakage



1 Introduction:

Revenue Management (RM) also known as Yield Management has been well recognized as
an essential practice in many businesses. RM refers to the strategy and tactics used by a
number of industries notably the airline industry, to manage the allocation of their capacity
to different fare classes over time in order to maximize revenue (Philips, 2005). RM can
be considered a special case of pricing with constrained supply. However, the two essential
features of RM practice are: (i) market demand segmentation which is in the context of
airline RM, it is about managing the set of fare classes, each of which often has a fixed
fare price at least for a short selling period; and (ii) an airline can change the availability
of fare classes over time. These two essential features are since legacy of airline RM in
the 1980s. Prior to 1978, the airline industry in the United States was heavily regulated.
Both schedules and fare were tightly controlled by Civil Aeronautics Board (CAB). Fare
were held sufficiently high to guarantee airlines a reasonable return on their investments. In
1978, Congress passed the Airline Deregulation Act, consequently effective from 1983, all
fare regulations were removed. This resulted in an advent of modern airline RM, which is
among one of the the most important applications of management science and operations
research (Bell, 1998). Initially RM started in airline industry in 1980s and since then it has
emerged as an essential practice by numerous industries that include, travel, cargo, media,
utilities and retails (Talluri and Ryzin, 2004). There has been a tremendous growth in RM
research, a detailed coverage of the research in RM can be found in McGill and Ryzin (1999)
and more recently in Chiang et al. (2007). An airline RM research has focused distinctly in
four categories: forecasting; overbooking; quantity/inventory control (booking control); and
pricing. However, there is a growing interest in joint approach to these categories, in experts’
opinion an integration of pricing and quantity decision is expected to improve firms’ revenues
significantly (Cote et al., 2003). The RM practice is classified into Quantity-based RM and
Price-based RM (Talluri and Ryzin, 2004). In quantity-based RM, the revenue of a firm is
optimized by adjusting the availability of quantity for pre-determined prices. This practice
is mostly observed in the aviation industry. Price-based RM is more commonly observed
in the retail industries, prices are optimized for maximum profit for a fixed resource. In
its simplest form, RM can be studied in the context of the Newsvendor (also referred as
Newsboy) problem, having a simple yet an elegant structure. The problem is considered
as a building block in stochastic inventory control. The problem serves as an excellent tool
for examining how operational problems interact with marketing issues to influence decision-
making process at a firm’s level (Petruzzi and Dada, 1999). McGill and Ryzin (1999) showed
that a single-leg flight with two fare classes RM problem is essentially equivalent to a single
period inventory or newsvendor problem.

Price differentiation refers to the practice of a seller charging different prices to different



customers, either for exactly the same good or for slightly different versions of the same
good. Price differentiation is a powerful way for sellers to improve profitability. However, it
also brings additional level of complexity in the pricing decision, and often creates a need
of analytical techniques for optimal pricing and price differentiation. The price differentia-
tion is also regarded as the ways that can enable extracting additional profit from a selling
process by charging different prices. The tactics for price differentiation include charging
different prices for exactly the same product, charging different price for different versions
of the same product, and combination of the two. In economics literature, the price dif-
ferentiation is also referred as price discrimination. Price discrimination is also subject to
some controversies, but there are several less controversial strategies in price differentiation
such as product versioning, regional pricing, and channel pricing. There is both an art and
a science to price differentiation. The art of price differentiation is to find a way to divide
the market into different segments such that higher prices are set for customer with a higher
willingness to pay, and lower prices are set for customers with a lower willingness to pay.
Fare price differentiation is among the principal tactics in airline RM, in which an airlines
segments its market demand from only one fare class to multiple fare classes. Each fare
class is differentiated with a fare price based on the willingness of passengers to pay, who
are attributed by an airline to that particular fare class. Airlines often do both the price
and time differentiation by offering early sales with deeply discounted tickets for customers
who are willing to purchase ticket much in advance and will also be subject to penalties for
any changes or cancelation; this sale is targeted to leisure/economy class passengers. Air-
lines also reserve their cabin capacity for late arriving business class passengers with higher
willingness to pay. There are numerous examples which are observed in several other in-
dustries where a price differentiation framework leads customers to different channels using
differentiated prices. For example, online versus retail store sales, in which, the firm may
offer discounted prices for online sales but with less or no option of touch and feel. Whereas,
physical retail stores sales are higher priced because the customers can interact with prod-
ucts and sales staff. It has been reported by many research studies (see Philips (2005) and
Talluri and Ryzin (2004)) that the price differentiation by segmenting market brings addi-
tional profitability, however, different prices for distinct market segments would augment the
movement of customers from one market segment to another. This behavior is referred as
cannibalization. Once market is segmented there are various strategies that a firm adopt’s
to mitigate cannibalization and maintain the fences that differentiate the market. A fence is
a device that is designed to preserve the market segmentation and limit spill over between
segments, however, most fences are imperfect and do allow some amount of demand leakage
from high priced market segment to lower priced market segments (Zhang et al., 2010). The
firms can only apply improved fences by introducing restriction which would make difficult or
time consuming for customers to cannibalize freely. Among such devices commonly observed



are: early purchase, prolong processing time, return penalties, channel of purchase, etc.
Earlier researches have identified that maintaining appropriate fences is very essential for

success of RM (see Philips (2005), Kimes (2002), Hanks et al. (2002), and Zhang et al.
(2010)). However, there are still many concerns being unaddressed especially in the context
of airline industry , such as: (i) How does the demand leakage impact the profitability
for an airline that adopts an optimal price differentiation strategy? (ii) Given the fact that
demand leakage is experienced by an airline, what can be a comprehensive control mechanism
to achieve a joint optimization of fare pricing and seat inventory control decisions? and (iii)
When demand distribution may not be known, what should be an optimal joint strategy for
fare pricing, and seat inventory control decisions for an airline? In addition, how effective
this strategy would be compared to if the demand distribution is known. In this paper, these
concerns are addressed in an airline industry context.

The remainder of this paper is organized as follows: In Section 2, a brief literature review
is presented. Section 3, defines the problem of an airline offering its single flight leg capacity
into imperfectly segmented fare classes which causes demand leakage. Models are developed
for an airline to address this issue under both the deterministic and stochastic demand situ-
ation. Section 4 presents a detailed numerical study with the proposed models, discusses the
findings, and the impact of various problem related parameters onto an airline’s profitability.
Finally, in Section 5, the results are summarized with conclusions along with the suggestions
for future research.

2 Literature Review:

A comprehensive overview of literature related to Airline RM is due to McGill and Ryzin
(1999) and more recently in Chiang et al. (2007). An overview of pricing research in the con-
text of RM is presented in Bitran and Caldentey (2003). Historically the first work related
to quantity based RM was done by Littlewood (1972) with an application to airline industry.
Later Belobaba (1987; 1989) extended Littlewood (1972)’s work and proposed the commer-
cially most practiced Expected Marginal Seat Revenue (EMSR) heuristic. Among recent
works on seat allocation are Brumelle and Walczak (2003) in which they considered dynamic
version of revenue management problem with multiple demand. In contrast, Bertsimas and
Popescu (2003) studied seat allocation problem in a flight network revenue management sit-
uation. An overview of the pricing research in the context of revenue management is done
by Bitran and Caldentey (2003). Feng and Gallego (2000) studied, when it is optimal to
change the price within a given allowable time dependent price paths. Each path follows
general Poisson process with Markovian, time dependent and predictable intensities. An
efficient algorithm is proposed to determine the optimal pricing policy. In Gallego and van



Ryzin(1994; 1997) demands are considered price dependent and the demand intensity is a
function of prices for the products and time at which these prices are offered. They proposed
a simple heuristics in which the demand processes are replaced by the demand expectation.
The heuristic results asymptotically optimal solution for this stochastic point control prob-
lem. An optimal dynamic pricing policy is also identified that maximizes the total expected
revenue over a finite planning horizon using intensity control theory.

Airline RM problem can be considered as an extended Newsvendor problem (Philips,
2005), a common objective in both problems is to maximize the profit by either setting
capacity allocation rule or pricing or the combination of both. In airline RM problem usually
there are more than one fare classes. Hence the problem becomes more complex. Mostly
in RM seat allocation studies nesting booking limits are determined which assume low fare
demand is observed before the high fare class demand. Petruzzi and Dada (1999) studied
an extended Newsvendor problem where the pricing and capacity allocation is determined
simultaneously. They established a number of new results with a comprehensive review of
existing literature. A single period newsvendor problem is a building block in stochastic
inventory control. It incorporates the fundamental techniques of stochastic decision-making
and can be applied to a much broader scope. The problem is well researched and its history
traces back to Edgeworth (1888)’s work in which it first appeared in the banking context.
During the 1950’s, war effects enabled the expansion of research in this area, leading to the
formulation of this problem as the inventory control problem. Arrow et al. (1951) showed
that it is critical to have optimal buffer stocks in an inventory control system. Porteus (1990)
and Lee and Nahmias (1990) presented a thorough review of the newsvendor problem using a
stochastic demand. In most studies, the pricing is considered as fixed parameter rather than
a decision variable. Whitin (1955) was the first to discuss the pricing issues in the inventory
control theory. Mills (1959) extended Whitin (1955)’s work by modeling the uncertainty of
the price sensitive demand. He suggested an additive form for the study and assumed that
the stochastic demand was a summation of the price-dependent risk-less demand and of the
random factor. The risk-less demand is considered a deterministic function of the price.
The most evident benefit of such modeling is that the random behavior of the demand
is captured using standard distributions independent of pricing. Karlin and Carr (1962)
presented a multiplicative form of demand. In this model, the price dependent stochastic
demand is considered as the product of the riskless demand function and of the random
factor. Both the additive and multiplicative models are fundamental to the pricing problem.
Some subsequent contributions to the additive model are due to Ernst (1970), Young (1978),
Lau and Lau (1988) and Petruzzi and Dada (1999). The contributions to the multiplicative
model include Nevins (1966), Zabel (1970), Young (1978) and Petruzzi and Dada (1999).
Mieghem and Dada (1999) studied the quantity and pricing of the price versus the production
postponement in the competitive market. A coordination of the dynamic joint pricing and



production in a supply chain is studied by Zhao and Wang (2002) using a leader/follower
game. Optimal control policies are identified for the channel coordination. Bish and Wang
(2004) studied the optimal resource investment decision on a two-product, price-setting
firm that operates in a monopolistic market and that employs a postponed pricing scheme.
The principles on the firm’s optimal resource investment decision are provided. Gupta et al.
(2006) developed a pricing model and heuristic solution procedures for clearing end-of-season
inventory. Yao et al. (2006) revisited the standard newsvendor problem and its extension
with pricing. The work generalizes the problem under the multiplicative modeling approach
and shows joint concavity of the revenue function of the problem under various stochastic
demand distributions. The analysis of the problem using the additive modeling approach is
presented in Yao (2002).

Earlier efforts towards integration of pricing and seat allocation in airline RM are due
to Weatherford (1997) where the customer demand is assumed to be normally distributed
with a mean depending on a linear function of price. Feng and Xiao (2001) also studied the
integration aspect of capacity and pricing of perishable assets and presented a comprehensive
model under stochastic demand situation. Yaghin et al. (2012) proposed possibilistic multiple
objective pricing and lot-sizing model with multiple demand classes. In the context of airline
industry, Oster and Pickrell (1988) discussed the issues of code sharing, joint fares, and
competition in the regional airline industry. A bi-level mathematical programming approach
is developed for joint determination of fare price and seat allocation by Cote et al. (2003).
Li (2001) studied pricing non-storable perishable goods by using a purchase restriction with
an application to airline fare pricing. Raza and Akgunduz (2008) proposed a game theoretic
model for an integrated approach for fare pricing competition in duopoly with seat allocation.
Later, Raza and Akgunduz (2010) extended their work in cooperative game setting using
Nash bargain solution (Nash, 1950). More recently, there is an interest to study market
segmentation and demand leakages due to imperfect segmentation mainly in the context
of multi-item newsvendor problem with pricing. Zhang and Bell (2007) studied the effect
of market segmentation with demand leakage between market segments on a firm’s price
and inventory decisions. In continuation, Zhang et al. (2010) investigated optimal fences on
joint pricing and inventory decisions with demand leakages using a sequential optimization
procedure. However, to author’s knowledge there are no such studies which have been done
to outline an integrated framework to these issues with an application to airline industry.

There are several service industries that lack historical data in order to accurately estimate
the demand behavior, there is always a lack of historical data for some retailing sector such
as fashion products, and with no exception to airline industry. McGill (1995) has claimed
that airlines record the historical data of ticket sales but not the actual demand. In addition,
Kurawarwala and Matsuo (1996) agreed with the arguments presented in Fisher and Raman
(1996), and acknowledge that the lack of actual demand data is not only limited to fashion



products but also to many other style goods. It is therefore reasonable to conclude that
airline industry experiences among the most precarious demand behaviors, and in many of
these situations historical sales information cannot be captured, therefore, the distribution
free analysis primarily suggested in Scarf (1952), and later highlighted by Gallego and Moon
(1993) would bring significant amount of insights for an airline’s profitability.

3 Model Development:

In this section, we propose a mathematical model of RM problem for an airline offering
the two fare classes to its passengers. Airline segments its market demand using a price
differentiation strategy which results in different fare classes. Hence market segmentation is
achieved through creation of fare classes using a fare price differentiation strategy. However,
this segmentation is regarded as imperfect, and it is assumed that the passengers who belong
to the full fare class would cannibalize to a discounted fare class. When an airline offers its
fares into a monopolistic market, it’s problem is to exercise optimal integrated control on fare
class design using a price differentiation strategy, fare pricing, and seat inventory control.
The models in this situation for an airline are developed assuming both the deterministic
and stochastic market demands and to the case when the demand distribution is unknown
to an airline. Single-leg seat inventory control is also referred as single-resource capacity
control in airline industry. The objective is to best allocate capacity of a resource (seats
in the cabin) among different classes of customers. Littlewood (1972) proposed his famous
Littlewood’s rule for two fare class which determines seat allocation (booking limits) for
each fare class. The rule assumes sequential arrival of the customers, which means that
demand for discounted fare class is observed prior to full fare class. Littlewood (1972)’s rule
while assuming sequential arrival, optimally allocates the cabin capacity among fare classes
by estimating the booking limits (protection level), and the resulting control is referred as
nesting control.

Consider an airline offers two immediately adjacent fare classes at differentiated fare price
in its single flight leg in monopoly, and it has a cabin capacity, c. The fare class 1 is for the
passengers who are willing to pay the full fare price, p1. The fare class 2 is for passengers
with willingness to pay the discounted fare price, p2. Without loss of generality it is assumed
that p1 > p2. In a perfect market segmentation situation, a linear riskless price dependent
demand [αi − βi pi]

+ , where αi, βi > 0, ∀i = {1, 2}, is observed by an airline in fare class
i = {1, 2}. The linear function is popular in the literature because of its simplicity and
more importantly it has sufficient abilities to capture important managerial decision aspects
(Choi, 1996; Chiang and Monahan, 2005; Zhang et al., 2010). Next, it is assumed that the
fences (segments) observed due to this fare price differentiation strategy are imperfect, and



therefore, an airline experiences γ(p1 − p2) demand that is leaked from full fare class to
discounted fare class, where γ > 0. γ is defined as leakage rate. The demand γ(p1−p2) from
full fare price segments leaks to discounted fare class segment. If γ = 0, then airline has
perfect fencing between the two fare classes, thus the leakage is zero. It is also assumed that
the fences are achieved with no additional investment. As discussed previously, the linear
demand curve better suits in this research, however, incorporation of the leakage into the
existing linear demand curve would yield following adjusted demand functions:

y1(p1, p2, γ) = α1 − β1p1 − γ(p1 − p2) (1)

y2(p1, p2, γ) = α2 − β2p2 + γ(p1 − p2) (2)

For the convenience of analysis, y1 = y1(p1, p2, γ) and y2(p1, p2, γ), are represented by y1, and
y2 respectively. Now the scenario is extended where an airline experiences price dependent
stochastic demand Di(p1, p2, γ, ξi) for a fare class i, ∀ i = {1, 2}. Briefly, Di(p1, p2, γ, ξi)
is represented by Di, and it has two components: one is from the price dependent risk-
less demand yi and the other from is the stochastic price independent demand ξi. The
price independent stochastic demand ξi has a probability distribution function fi and a
cumulative probability distribution function Fi, both are continuous,twice differentiable,
inverseable, and following an increasing failure rate (see Lariviere (2006), Petruzzi and Dada
(1999)). These characteristics are often found in many commonly used distributions such
as Uniform, Normal, Lognormal, etc. (Bain and Engelhardt, 1992). Moreover, ξi is assumed
to be bounded in [ξ

i
, ξi], the expectation of ξi is µi with the standard deviation σi. As

can be noticed from literature review, there are two types of modeling approaches often
considered to incorporate the randomness, ξi: i) additive; and ii) multiplicative. Recent
discussions on these modeling approaches can be found in Petruzzi and Dada (1999) and
Yao et al. (2006). In this paper, the additive modeling approach is used, thus price dependent
stochastic demand Di, for the fare class i is the sum of riskless demand yi and random factor
ξi such that:

Di = yi + ξi, ∀ i = {1, 2} (3)

Petruzzi and Dada (1999) suggested that for an additive approach, a more convenient risk-less
demand is linear function which has been already adopted for this research and discussed
previously is this section. Following earlier works, this paper also assumes that when an
airline experiences a price dependent stochastic demand, it observes sequential arrival of
demand, and in this context the discounted fare class demand is observed prior to the full
fare class demand in the sequential arrival process resulting a nesting control. The airline’s



optimization problem, P , would be:

P : π = Max
p1,p2,x1,x2 p1min{D1, x1 + x2 −min{D2, x2}}+ p2min{D2, x2} (4)

subject to:

x1 + x2 ≤ c (5)

In problem, P , an optimal expected revenue would be, π∗(p∗1, p
∗
2, x

∗
1, x

∗
2) =

Max
p1,p2,x1,x2 π(p1, p2, x1, x2).

Thus, the airline’s problem is to determine an optimal integrated decision on fare prices, p∗1,
p∗2, and also the seat inventory controls, x∗

1, and x∗
2 for full fare and discounted fare classes

respectively. Following earlier works from Raza and Akgunduz (2008), and Raza and Akgun-
duz (2010) Equation 4 is simplified, finally, an airline’s constrained optimization problem, P
can be written as:

P : π = Max
p1,p2,x1,x2 p1 x1 + p2 x2 + (p1 − p2)

∫ x2−y2

ξ
2

F2(ξ2)d ξ2 − p1

∫ x1+
∫ x2−y2
ξ
2

F2(ξ2)d ξ2−y1

ξ
1

F1(ξ1)d ξ1(6)

subject to:

x1 + x2 ≤ c (7)

It can be clearly noticed that the problem, P is a constrained nonlinear optimization problem.
The advantage of the formulation of the problem, P presented in Equations 6-7 can be
extended to the more than two fare classes very conveniently. In the revenue expression
presented in Equation 6 , the first two terms denote the deterministic revenues that an
airlines observe by offering two fare prices, p1, and p2 respectively, and allocates x2 capacity
of its cabin c, to discounted fare class, and x1 to the full fare class. The third term in the
expression is the expected revenue gain that is observed by exercising the nested control.
The expected demand

∫ x2−y2
ξ
2

F2(ξ2)d ξ2 is protected from the discounted fare class 2, in

the sequential arrival process and would be reserved for full fare class 1. This will yield a
revenue gain mainly due to fare price differential, p1 > p2. The last term is expected loss in
the revenue due to the fact that the observed demand for full fare is less than the capacity
allocated, that is x1 +

∫ x2−y2
ξ
2

F2(ξ2)d ξ2.

4 Numerical Analysis:

In this section, a numerical study is presented to examine the impact of demand leakage rate
and demand uncertainty on an airline’s optimal strategies for joint fare pricing, seat inventory
control, and fare class segmentation. In an illustrative example, the model parameters
adopted from Zhang et al. (2010) but customized for an airline industry setting with some



additional parameters, thus c = 100, α1 = 80, β1 = 0.2, α2 = 180, β2 = 0.8, µ1 = µ2 = 0.
First the deterministic demand situation is considered, and then the study is extended to
the case of stochastic demand.

4.1 Deterministic Demand:

In the deterministic case, it is obvious to notice that σi = 0, ∀i = {1, 2}, and therefore,
demand information is perfectly known to an airline. In Table 1, the impact of demand
leakage (γ) is studied. In addition, a comparative framework to calibrate an airline’s fare
class segmentation strategy can be realized by comparing the revenues that an airline could
yield offering an equivalent single fare class with price dependent riskless demand, 260− p.
This strategy is also referred as single fare class or 1-segment in this paper. In the case
of single fare class, the problem resembles single period standard newsvendor problem with
pricing which can be optimized to global optimality for most standard stochastic demand
behaviors (Petruzzi and Dada, 1999; Yao, 2002). The optimal revenue to an airline for 1-
segment situation is, π∗(1) = 16000, at an optimal fare price, p∗ = 160. In Table 1, it can be
noticed that when an airline offers two fare classes, and exercises an optimal joint control
strategy that is able to yield a revenue, π∗(2) = 17225 which is about 8% better than the
single fare class optimal revenue, given that the fare class segmentation is perfect, i.e., γ = 0.
With an increase in the amount of demand leakage rate, γ from the full fare price segment
to discounted fare class segment, the optimal revenue gains observed by an airline drops
significantly. Thus, when the proportion of demand leakage rate is, γ = 100, the optimal
revenue to an airline using the proposed integrated optimal framework is 16001.96 which is
now only 0.01% superior to the corresponding unsegmented optimal revenue. In Table 1, it
is also noticed that with an increase in the leakage, an optimal joint strategy for an airline
would be to mitigate the demand leakage by reducing the price differentiation between the
two fare classes, however, it will keep the same capacity allocation for each fare class it offers.



Table 1: Impact of γ in deterministic demand situation

γ π∗(1) x∗
1 x∗

1 p∗1 p∗2 π∗(2)

0

16000

34 66 230.00 142.50 17225.00
0.1 34 66 203.08 149.23 16753.85
0.5 34 66 176.97 155.76 16296.97
1 34 66 169.66 157.59 16168.97

1.5 34 66 166.75 158.31 16118.07
2 34 66 165.19 158.70 16090.74
5 34 66 162.17 159.46 16037.98
10 34 66 161.10 159.72 16019.29
20 34 66 160.56 159.86 16009.72
50 34 66 160.22 159.94 16003.91
100 34 66 160.11 159.97 16001.96
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Figure 1: Impact of leakage (γ) for deterministic demand



4.2 Stochastic Demand:

In the stochastic demand situation, price dependent riskless demand parameters are same
as mentioned in the previous section, also we have already assumed that for each fare class
segment µi = 0, i ∀ {1, 2}. Furthermore, again for simplicity σi, i = {1, 2} are assumed equal
for each fare class segment, thus, σ = σi. σ = {1, 5, 10, 15}. In addition to this, consistent
with Mostard et al. (2005), ξi ∈

[
−
√
3σ,

√
3σ

]
. In complex problem like this one, numerical

experimentation is conducted with uniform, and normal distributions only. Tables 2 and 3
report numerical experimentation when an airline faces price dependent stochastic demands
which are uniformly and normally distributed respectively. Some findings are similar to that
are already noticed with the deterministic demand situation, such as, at any given demand
variability i.e., σ, an increase in demand leakage rate, γ drives an airline to increase seats allo-
cation for its discounted fare class. Naturally, an airline to mitigate demand leakage reduces
the price differential between the two fare classes. It reduces the full fare class price, and
increases the price of the discounted fare class, but in different proportions. It can be inferred
from the numerical experimentation reported in Tables 2 and 3 that the proposed sequential
optimization approach is very competitive to the joint optimization, more importantly, its
performance is reasonably consistent with regards to demand leakage and demand variabil-
ity factors which are considered in this numerical experimentation. For a given demand
variability, the performance of the sequential optimization marginally diminishes compared
to joint optimization with an increase in demand leakage. Nevertheless, it is important to
notice that the use of joint optimization approach is expected to return slightly higher rev-
enue gains compared to that of the corresponding sequential optimization approach, and the
performance is slightly sensitive to demand leakage and demand variability.

Next, the revenue gains of implementing the proposed integrated approach to market
segmentation are compared to the corresponding single fare class segment revenues. Inter-
estingly, when the price dependent demand in both fare classes are uniformly distributed
demand, the resulting equivalent single segment demand distribution is obtained by convo-
lution (see Bracewell (1986), Bain and Engelhardt (1992), and Boucher (2013)) of the two
uniform distributions, and it follows triangular distribution such that ξ ∼ tri[−2

√
3σ, 2

√
3σ],

where ξ is the random factor for single fare class. Additionally, the convolution of the two
market segments that are normally distributed, follows a normal distribution with mean
zero and standard error of

√
2σ, and bounded such that ξ ∈ [−

√
6σ,

√
6σ]. This comparative

framework was earlier used in Zhang et al. (2010) in a related study on market segment in
a firm’s context. It is noticeable that both the demand variability and the demand leakage
impact onto an airline’ profitability using the proposed integrated approach. For instance,
in the case of uniformly distributed demand, at σ = 1, when there is a zero demand leakage
the revenue yield is 7.8% better than the corresponding single segment revenue, which drops



to 0.38% only when the leakage rate is γ = 5. In the case of normally distributed demand,
at σ = 1, at γ = 0, the revenue yield is 7.84% better than the corresponding optimal single
segment revenue. However, at γ = 5, the revenue gain due to segmentation is only 0.45%
superior to the corresponding optimal single segment revenue. Noticeably, the performance
of segmentation strategy with demand leakages was found to be slightly better in the case
of normally distributed demand.

As discussed earlier, an interesting avenue of this problem can the case when the demand
distribution to an airline in unknown. However, the simple parameters, mean and standard
deviation of the stochastic demand are the only available information. In this situation, the
distribution free approach that is fundamentally based on Scarf (1952)’s rule is utilized. Gal-
lego and Moon (1993) suggested a framework to calibrate the effectiveness of the distribution
free approach and built a performance measure, Expected Value of Additional Information
(EVAI), which is determined by taking the difference of the optimal revenue when demand
distribution is perfectly known and the optimal revenue achieved using the control decisions
(fare pricing and seat inventory control) determined by using the distribution free approach
and the distribution is known. The numerical experimentation summary in this situation is
reported in Table 4. As may be notice that with low demand variability, σ = 1, the relative
percentage deviation in the revenue due to not knowing the demand distribution precisely at
γ = 0 was 0.185% and 0.162% in case the unknown demand may have followed the uniformly
and normally distributed demands respectively. At an increasing demand leakage, γ = 5, the
relative deviations are 0.222% and 0.181% for uniformly and normally distributed demand.
Thus, it may be concluded that the demand leakage rate does not significantly impact the
performance of the distribution free approach. At a higher demand variability, σ = 15,
when demand leakage is zero, this relative deviation is 3.424% and 2.881% for uniformly and
normally distributed demands respectively. Whereas, at a higher demand leakage rate, i.e.,
γ = 5, the relative deviations are 4.075% and 3.171% for uniformly and normally distributed
demands. This is inferred that the rate of demand leakage, γ, does not significantly impact
the performance of the proposed distribution free approach. However, the demand variabil-
ity, impacts considerably the performance of the distribution approach to the problem, when
the demand distribution is unknown.

A comprehensive comparison of the optimal revenue gains is reported in Figures 2, and 3
at two distinct demand variabilities, σ = 1, and σ = 15 are considered. These figures report
the comparison of optimal revenues for the four distinct situations: 1-segment, π∗(1); optimal
2-segment revenues, π∗(2), for both the situations, when sequential and join optimization
procedures are used; and lastly, 2- segment revenue, when the demand distributions for both
fare classes are unknown and the distribution free approach is used with joint optimization
procedure. It is clearly noticed that with an increase in the demand variability, an airline
may loose competitive revenue gain over single fare class using a segmentation strategy as



the demand leakages increase. Precisely knowing the demand distribution can be vital in
contributing towards an airline’s profitability, however, in the situation when the demand
is unknown to an airline, the use of distribution free approach can be very competitive as
long as the demand variability is not substantially high. This performance behavior of the
distribution free approach can be noticed in Figure 4.
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Table 4: Numerical experimentation with distribution free approach

Distribution free optimal control EVAI
σ γ x∗

1 x∗
2 p∗1 p∗2 Uniform Normal

1

0 34.47 65.53 230.27 143.25 31.64 27.72
0.1 34.39 65.61 203.40 149.90 32.97 28.17
0.5 34.32 65.68 177.37 156.32 34.40 28.59
1 34.29 65.71 170.09 158.11 34.84 28.70
2 34.28 65.72 165.64 159.21 35.13 28.76
5 34.27 65.73 162.63 159.94 35.33 28.81

5

0 36.12 63.88 230.38 145.48 165.09 141.95
0.1 35.77 64.23 203.81 151.83 172.41 144.64
0.5 35.40 64.60 178.20 157.85 179.87 146.75
1 35.29 64.71 171.06 159.51 182.08 147.24
2 35.22 64.78 166.71 160.51 183.46 147.51
5 35.17 64.83 163.77 161.18 184.41 147.68

10

0 37.85 62.15 228.93 146.99 342.83 293.43
0.1 37.18 62.82 202.86 153.01 358.60 299.10
0.5 36.47 63.53 177.93 158.56 373.81 302.91
1 36.25 63.75 171.03 160.06 378.08 303.61
2 36.11 63.89 166.83 160.95 380.68 303.95
5 36.02 63.98 164.01 161.55 382.44 304.14

15

0 39.32 60.68 226.21 147.49 528.11 454.30
0.1 38.33 61.67 200.72 153.21 552.90 462.68
0.5 37.29 62.71 176.61 158.32 575.64 467.45
1 36.98 63.02 169.98 159.66 581.70 468.07
2 36.79 63.21 165.97 160.45 585.32 468.27
5 36.65 63.35 163.28 160.98 . 587.72 468.33
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Figure 2: Impact of leakage rate (γ) for normally distributed demand with σ = 1
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Figure 3: Impact of leakage rate (γ) for normally distributed demand with σ = 15
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Figure 4: Impact of leakage rate (γ) and σ on using the distribution free approach

5 Conclusion and future research suggestions:

In this paper an integrated approach to optimal fare pricing, and seat inventory control is
presented for an airline which is experiencing demand leakage. The fence that segments
the market demand is considered imperfect. Due to imperfect market segmentation, the
airlines experiences the demand leakage from full fare price market segment to discounted
fare market segment. The research develops models for RM for an airline in situations
when the airlines experiences price dependent deterministic, and stochastic demand. The
models are analyzed to determine an integrated optimal control to fare pricing, and seat
inventory control decisions. In addition, this research also explores the situation when the
distribution of the price dependent stochastic demand is unknown, a joint optimal control on
fare pricing, and seat inventory control is computed likewise the deterministic and stochastic
demand models. The numerical experimentation reported in this paper reveals the following
salient outcomes:



1. When an airline adopts an integrated optimal strategy to fare pricing, and seat in-
ventory control, it yields superior revenues compared to the situation when an airlines
does not opt to segment the market into fare classes, however, this competitive edge
deteriorates significantly by demand leakage and demand uncertainty. In a numeri-
cal study, this finding is consistently noticed in situations when an airline faces three
distinct demand situations: deterministic price dependent demand; stochastic price
dependent demand; and when demand distribution is unknown.

2. Increasing amount of leakage rate γ, diminishes the improvement in revenue gains that
an airlines can obtain over selling its seats into a single fare class.

3. The use of distribution approach based on Scarf (1952)’s rule can yield competitive
revenue gains for the situation when the demand distribution is unknown to an airline.
However, its performance deteriorates with an increase in demand variability. Unlike
demand variability, an increase in demand leakage rate does not significantly impact
the performance of the distribution free approach.

The future work directions include to investigate the optimal strategies and investments
that an airlines may adopt to be immune from demand leakage effects. The present analysis
has considered the firm in monopoly only, an interesting avenue, therefore would be to
consider game theoretic approach to this problem in a duopoly or oligopoly.
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