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ABSTRACT 

 

This research explicates the similarities between data envelopment analysis (DEA) and multiple 

objective optimization (MOO) and proffers an original, hybrid, non-linear, multi-objective, 

resource allocation based optimization program that allows for the adjustment of resources 

(system inputs) either with or without decision-maker input.  The motivation for this study is the 

necessity to balance resources among hospitals in large systems that are centrally controlled and 

funded, a task which has sometimes been based on historical funding levels with minor 

adjustments (e.g., centrally funded hospitals, such as those in the military). In these cases, inputs 

are fixed at certain levels and may only be adjusted within Decision-Making Units (DMUs). A 

mathematical formulation and example solutions based on both textbook and real data are 

provided.   
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BACKGROUND 
 

Carlos Romero [6] illustrated that single objective, multi-objective and goal programming 

approaches are all special cases of distance models.  An article written by Jorho, Korhonen, and 

Wallenius [5] expands Romero’s idea by illustrating the similarity between Data Envelopment 

Analysis (DEA) and Multiple Objective Linear Programming (MOLP).  This research explicates 

the similarities between DEA and multiple objective optimization (MOO) similar to Jorho et al, 

and proffers a hybrid, non-linear, multi-objective, resource allocation based optimization 

program that allows for the automatic adjustment of resources (system inputs) either with or 

without decision-maker input for governmental or military health systems with fixed inputs.  A 

simple textbook formulation and solution of the hybrid model is included coupled with real-

world analysis of U.S. Army military facility data.  The motivation for this study is the necessity 

to balance resources among hospitals in large systems that are centrally controlled and funded 

while sustaining system output objectives. 

 

MOTIVATING EXAMPLE 

 

The Military Health System (MHS) attempts to balance health care cost, quality, and access 

across a $4 billion enterprise. Doing so requires careful management of major system 

components.  The driving postulate (based on the authors’ previous research and involvement 

with decision makers) is that key leaders of this medical system wish to minimize inputs 

(primarily budgeted dollars and full-time equivalent healthcare providers) while maintaining 

outpatient weighted workload, inpatient weighted workload, prevention metrics, access metrics, 

and patient satisfaction.  These components are linked in a complex, multi-objective fashion.   

 

This paper first provides a discussion of multi-objective programming (MOOP) given the nature 

of the specified health care problem.  Second, a discussion of a related method, DEA, is 

provided.  After detailing these sets of methods, we detail the relationship between them, 

showing that they are nearly structurally identical.   

 

After detailing DEA and MOOP, we discuss how neither provides a solution that re-directs slack 

to optimize total system performance.  In other words, system efficiency (objectives) are subject 

to the assumption of fixed inputs. We therefore proffer a new, non-linear, multi-objective, auto-

optimization program that readjusts inputs automatically to maximize system efficiency.  Such a 

program is useful for healthcare systems with fixed budgets and personnel authorizations (such 

as the U.S. Veteran's Hospital Administration). While non-linearity is inescapable, we 

demonstrate the formulation's effectiveness in solving a constant returns to scale (CRS, also 

known as CCR for Charnes, Cooper, and Rhodes) textbook healthcare problem as well as a 

variable returns to scale (VRS, also known as BCC for Banker, Charnes, and Cooper) real-world 

allocation problem associated with the U.S. Army hospital system.  We begin with a discussion 

of multi-objective programming. 

 

MULTI-OBJECTIVE PROGRAMMING 

 

The motivating example consists of multiple competing objectives.  While one might explore 

methods for modifying cost and/or production functions (e.g., Cobb-Douglas), the search here is 



restricted to the field of optimization and begins with a discussion of the basic linear program 

(LP).  

 

The typical linear program may be expressed in matrix notation as follows.   
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Here, the objective function is composed of the 1 x n coefficient vector d


 and the n x 1 decision 

variables x


.  The constraint set is composed of the m x n constraint coefficient matrix A along 

with our decision variables and the m x 1 right hand side constraints b.  Two objections to LP 

formulation are that linearity is often an over simplification of reality and that decision makers 

are rarely concerned with just one objective function, as in our motivating example (see French 

[4]). To address non-linearity, one might modify the formulation as follows. 
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This formulation provides a nonlinear function g(*), which accounts for real world complexity 

(and adds the same complexity to the solution algorithm).  Still, the model does not consider 

multiple objective functions.  The multi-objective optimization (MOO) follows. 
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Here, (*)g


 is a set of functions that define all objectives to be maximized (or minimized).  The 

problem with this formulation is that conflicting goals may prevent the simultaneous 

optimization of all the objectives.  Generally, a Pareto optimal solution set is sought such that for 

Xy


there exists no Xxxgyg ii 


 )()( with strict inequality holding for at least one value of 

i. Unfortunately, finding the Pareto optimal still does not resolve the fundamental problem:  

which member of the efficient set does the decision maker choose?  To answer this question, one 

might consider a value function as in the following formulation (see Cohen [2]). 
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Subject to }0,|{  xbxAxXx
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. 

 

The value function f (*) is intended to monotonically increase with the decision maker’s 

preference.  Alternatively, the decision-maker may just explore efficient sets. 



Returning to the motivating example, it was assumed that the senior medical decision-makers 

seek to minimize inputs while maintaining outputs constant.  With an appropriately sufficient set 

of decision variables, one could attempt to devise a value function (as in f(*) above) based upon 

leaders’ estimations of the importance of each item.  In the case of this example, one might 

formulate the following set for optimization.   
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The objective function here is an i x i matrix coupled with an i x 1 set of decision variables for x.  

The constraint matrix A is of size m x i. 

 

Next assume that the f functions are ordered in a monotonic increasing fashion by preference.  

That is, f(g1*) is less important to the decision-maker than f(g2*) and so on.  If this importance 

function is discrete, the referent-derived weighting system is similar to that of utility matrix 

weights.  The inherent assumption is that the weighting system is developed consistently, i.e., 

that the decision-maker makes choices consistently in accordance with the value function f. 

 

If one makes an assumption that f and g are linear, then the formulation is called the Multiple 

Objective Linear Program (MOLP) and looks familiar. 
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Assume that there is interest in searching the non-dominated set of solutions.  To do so with a 

linear f and g involves the projection of any point onto the set of non-dominated solutions.  

Wierzbicki [7] provides an achievement scalarizing function (ASF), which is capable of this 

projection given a feasible or infeasible starting point.  The ASF will be discussed later, after an 

investigation of the structurally-related math programming technique of DEA. 

 

DATA ENVELOPMENT ANALYSIS 

 

DEA is a set of flexible, mathematical programming approaches for the assessment of efficiency, 

where efficiency is often defined as a linear combination of the weighted outputs divided by a 

linear combination of the weighted inputs as in the Charnes, Cooper, and Rhodes (CCR) model, 

which is a constant returns to scale (CRS) formulation [3]. Assume that an organization wishes 

to assess the relative efficiencies of some set of comparable subunits.  (The subunits are called 

Decision Making Units or DMUs.)  For each DMU, there is a vector of associated inputs and 

outputs of managerial interest.  In this case, the manager is interested in either maximizing the 

outputs while not exceeding current levels of inputs (output oriented) or minimizing the inputs 

without reducing any of the outputs (input oriented).  Using the hospital example, the inputs are 

budget, health care provider FTEs, and available beds, while the outputs are inpatient and 

outpatient weighted workload, a prevention metric, and patient satisfaction.  In the case of DEA, 



the manager assumes that the traditional definition of engineering efficiency (ratio of weighted 

outputs to weighted inputs) will result in an acceptable solution for technical efficiency.  With 

these assumptions in place, one may formulate the following fractional programming problem 

that may be solved to determine technical efficiency, defined (for now) as the ratio of weighted 

outputs to weighted inputs, for each separate DMU [7, p. 23]. 
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In this formulation, there is a vector of outputs ( y


), a vector of inputs ( x


), and z DMUs.  

Efficiency is designated as .  The index o identifies the selected DMU for which an efficiency 

score will be generated.  This mathematical program is run z times, once to determine the 

efficiency of each DMU.  (While MOLP simultaneously solves multiple objective functions 

given a value function, DEA optimizes efficiency for an individual DMU.)  The components of 

the vectors vu


 and are the weights to be determined for the outputs and inputs respectively.  This 

model defines efficiency for the selected DMU as the weighted linear combination of its outputs 

divided by the weighted linear combination of its inputs, subject to the constraint that, for each 

DMU (including the one whose index z is o), the efficiency cannot exceed one.  All weights are 

restricted to be nonnegative.  This formulation is nonlinear; however, if one seeks to maximize 

the outputs while maintaining inputs constant, it is trivial to normalize the weighted inputs such 

that they equal one. 

                                                        1o

T xv
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                                                                     (8)      

                             

Multiplying the numerator and denominator of the objective function as well as constraint (7) 

and finishing by adding (8) to the constraint set yields the following formulation. 
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For consistency with much of the literature, this formulation is considered the dual, so taking the 

“dual of the dual” provides the primal.  (The primal allows for better comparison with Multiple 

Objective Programming.)  In standard form, the primal follows.  
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Here, the epsilon is an Archimedean element, and the slacks (s*) reflect output shortages and 

input excesses.  A DMU that has an efficiency score of one and a zero-slack solution (for all 

slacks) is technically efficient or Pareto-Koopmans efficient.  As defined in Cooper, Seiford, and 

Tone [3], Pareto-Koopmans efficiency is attained only if it is impossible to improve any input or 

output without worsening some other input or output.  In all other cases, it is possible to improve 

one or more of the inputs or outputs without worsening any other input or output. 

 

Returning to our motivating example, one notes that the formulation of the DEA model will 

provide efficiency scores and slack information.  The importance of any objective function is 

allowed to be a function of automatically generated weights.  If a decision maker deems quality 

is more important than access, then the above formulation does not provide a weighting system 

(e.g., the f function). 

 

Fortunately, there exist a variety of DEA based linear programs that assign weights to inputs and 

outputs based on importance of items.  For example, Cooper et al. [3] provide a weighted slacks-

based model (W-SBM) with decision maker weights applied.  This model is similar to goal 

programming and is provided below (in fractional form) for reference. 
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Here, the w are weights and the s are slacks (input excesses or output shortages).  The inputs 

belong to X and the outputs belong to Y.  Returning to our example, one can readily see the 

capability of a decision maker to provide weights for budget and personnel inputs (index i) as 

well as cost, quality, and access outputs (index r).  See Cooper et al. [3, p. 105] for a complete 

discussion.  



THE RELATIONSHIP BETWEEN DEA & MOOP 
 

With this basic foundation in place, the question becomes, how does DEA relate to multiple 

objective programming and how might one leverage its methods to help the decision maker 

balance competing objective functions.  The relationship between the two approaches provides 

the first point of discussion. 

 

Jorho, Korhonen, and Wallenius (1996) [5] illustrated that DEA and MOLP are structurally 

related, as each might be formulated similar to the CCR output oriented model.  One first notes 

the need to restrict MOLP to solutions existing within the set of non-dominated criterion vectors 

through the use of a achievement scalarizing function (ASF), a function that projects any feasible 

or infeasible point onto the dominated set.   

 

Consider the following formulation of an ASF provided by Wiersbicki (1980) [7] and simplified 

by the authors.  
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Quite simply, one seeks to find x


 that minimizes the largest deviation between the aspiration 

location (in objective function space) and our current location (in objective function space), i.e., 
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maxmin , while ensuring that the “slacks” for all vectors are as small as possible, 

i.e., min  
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ii xcz
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 .  This simplistic explanation provides the basis for the formulation of the 

ASF. 

 

Following [5], one can further simplify our objective function with a simple replacement. 
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One should also note the following. 
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structurally similar to that of the CCR Input oriented model. 
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In fact, placing the models side-by-side reveals few structural differences (modified from [5]). 

 

CCR DEA Model Reformulated Referent Point Model 
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With this comparison in hand, one might turn to an example of MOOP, DEA, and a hybrid 

model for discussion. 

MOTIVATING EXAMPLE COMPARISON 

 

Let us return to the example regarding military hospitals in the MHS.  The components of the 

hospitals’ activities are intrinsically linked.  A possible multiple objective formulation related to 

these components might be the following. 
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This model seeks to maximize outputs while minimizing inputs subject to an f function 

determined by decision makers.  Alternatively, the original DEA program (CCR with input 

orientation for consistency) might be employed with a Y matrix consisting of output measures 

and an X matrix consisting of input measures.  Of course, the DEA formulation generally seeks 

weights independent of a referent function; however, one could program the referent function as 

a series of constraints, as in the W-SBM model. 

 

LIMITATIONS OF MOO AND DEA FOR FIXED INPUT SYSTEMS 

 

Decision-makers generally seek to investigate how inputs / outputs might be adjusted to improve 

the objectives.  The reduced cost information certainly provides a starting point for analysis, and 

system slack informs how one might be able to reduce inputs (for output-oriented models).  The 

dual variables show the effects of a unit relaxation in constraint might have on the objective 

function.  Finally, sensitivity analysis associated with adjustments in any portion of the model 

can help inform decision makers.  In fixed input systems, it becomes necessary to improve 

system performance by adjusting inputs in the system subcomponents (DMUs).  A multi-

objective model that adjusted resources automatically across all facilities to achieve maximum 

system efficiency would (at a minimum) provide decision-support and insight for leaders 

interested in evaluating multiple objectives simultaneously.   

 



In this next section, we provide an alternative, multi-objective formulation that is based on a 

super-objective applied to traditional DEA analysis.  This model assumes that the decision-

maker would like to change inputs and outputs in order to have the resources necessary to 

achieve at least a minimum level of performance. We specify the formulation of the model, and 

provide a CRS textbook example as well as a VRS real-world example.  A discussion of the 

model follows. 

 

MULTI-OBJECTIVE AUTO-OPTIMIZATION MODEL 
 

In the preceding discussion, we demonstrated that DEA and MOOP are related methods for 

evaluating multiple objective problems.  In DEA, we noted that the weights are determined via 

optimization, while in MOOP, these weights are assigned.  While both the MOOP and DEA 

formulations provide possible courses of action for decision makers, we propose a DEA-Based, 

Multi-Objective Auto-Optimization Model (AOM) for specific cases where one seeks to balance 

system components that might be interpreted as a performance ratio (not necessarily efficiency) 

as in the motivating example.  Such a formulation should be able to identify inputs that might be 

manipulated to improve system performance over multiple outputs (objectives).  Essentially, this 

formulation should be able to provide sensitivity analysis to advise decision makers how to 

optimally reallocate resources in order to attain the most efficient  system possible.  The next 

formulation applies to any multiple objective problems that involve fixed inputs (or possibly 

outputs) that are fixed en toto but can vary between DMUs.  For example, we use a fixed budget 

large hospital organization (such as the military hospital system, the veterans' hospital system, 

and governmental hospital systems) that may reallocate resources among its facilities. A 

description of the model, its derivation, and an application follow.  The definition of variables, 

sets, and data matrices follows. 

 

Indices 

 

inputsfor index 

outputsfor index 

)(hospitals DMUs  all ofindex 







k

j

mo

 

 

Decision Variables 

 

 DMUs allfor  required score efficiencyfor limit lower  

 with  DMU and input for weight  

 with  DMU and output for  weight  

 with  DMUby  input each   tosadjustment 

ko









r

ok

oj

ok

jo

ko




 

 

Data 

 

 

  with o DMUfor  output 

 with o DMUfor  input 

Yyjy

Yykx

jo

ko




 

 



   
o joj jo yazMax  (17) 

 

 

Subject to: 

 

oyr
j jojo  ,  (18) 

 

 },..2,1{,,0)( Nvoxy
k kokovkoj jovjo     (19) 

 

  

 ,1)( ox
k kokoko    (20) 

 

                                                        

okx koko ,,0   (21) 

                    

k
o ko  ,0  (22) 

 

free 

 0

 0

10

ko

Δ

k,o

j,oa

r

jo








 (23) 

 

The objective function (17) seeks to optimize the sum of the efficiencies for all of the DMUs, 

which are the weighted outputs in this AOM model. (Note:  subtracting a convexity variable and 

constraint converts this to a VRS model when also subtracted from the constraints associated 

with 19.) In (18), the weighted outputs are restricted to be strictly greater than a global efficiency 

variable r, which exists on [0, 1].  This constraint is important as one could imagine the objective 

function seeking to reduce the efficiency of one DMU to near zero in order to make the others 

nearer to one.  

 

In (19), we force the sum of the weighted outputs to be less than or equal to the sum of the 

weighted inputs after adjusting  them up or down by  the amount necessary to achieve the highest 

sum of efficiency scores for each selected DMU (o=v).  This constraint applies weights 

generated for each separate DMU analysis to all other DMUs inputs and outputs for relative 

efficiency comparison, just as is done in traditional DEA.  This constraint makes the problem 

non-linear since the input weights are multiplied against the input changes.  

 

In (20), we force the sum of the weighted and adjusted inputs to be equal to one.  Doing so 

ensures that we will have efficiency scores for each DMU less than or equal to one. Again, this 

constraint is nonlinear. 

 

In (21), we force each remaining input (after adjustment) for each DMU to be strictly greater 

than zero.  Negative resources are not feasible.  

 



The constraints in (22) require that any input adjustments sum to zero.  We cannot grow 

resources for reallocation.  Finally, the last set of constraints depicted in (23) are the usual 

bounds for the decision variables. 

   

One might also include management constraints regarding the maximum movement of resources 

to increase flexibility and reflect management input into the system, similar to the f function 

provided by the MOO programming.  Doing so would simply require bounds on the appropriate 

. These constraints would represent decision-maker input, similar to the development of the f 

function in multiple objective programming.   

 

TEXTBOOK EXAMPLE 

  

The solution to the AOM presented above provides the decision-maker recommendations 

regarding staffing of providers and allocation of funding such that all facilities achieve at least 

the efficiency associated with the r constraint.  With this model formulation, there is a method 

for providing information regarding the adjustment of all inputs and outputs independent of or 

dependent upon decision-maker input. 

  

Using Microsoft Excel's GRG Solver and GAMS CONOPT Solver, a simple, hospital-based 

textbook problem [1] was initially examined followed by a real-world example involving seven 

AMEDD hospitals with data from 2003.  In the textbook example, seven different hospitals 

(DMUs) were initially evaluated using standard CRS DEA. The adjustable inputs for the 

hospitals included Full-Time Equivalents (FTEs), supply expenses in 1,000's, and available beds 

in 1,000's.  Outputs include patient-days for those 65 and older in 1000's, patient-days for those 

under 65 in 1,000's, nurses trained, and interns trained.    The data are shown in Table 1 below: 

 

TABLE 1 

 

DMU FTEs Supply 

Expenses 

Available 

Bed Days 

Patient 

Days >=65 

Patient 

Days <65 

Nurses 

Trained 

Interns 

Trained 

A 310.0 134.6 116.0 55.31 49.52 291 47 

B 278.5 114.3 106.8 37.64 55.63 156 3 

C 165.6 131.3 65.52 32.91 25.77 141 26 

D 250.0 316.0 94.4 33.53 41.99 160 21 

E 206.4 151.2 102.1 32.48 55.3 157 82 

F 384.0 217.0 153.7 48.78 81.92 285 92 

G 530.1 770.8 215 58.41 119.7 111 89 

 

Solving the problem using CCR DEA models results in all hospitals being efficient with the 

exception of Hospital D, which is 90.73% efficient.  Reduced costs suggest that to enter the 

model, FTEs would need to be reduced by 12.16, expenses reduced by $184. 63K, and the 

number of interns adjusted by 7.67.  The reference set for DMU D includes hospitals A, B, and E 

(meaning that the dual values are non-zero).     

 

From the sensitivity analysis, a conclusion might be to reduce resources for Hospital D.  In this 

system, however, inputs are fixed.  They may be spread across the hospital system but not cut (at 



least in the short-term.  This leads us to using the AOM formulation provided in (17) through 

(23), setting r (the minimum efficiency for any facility) to at least .95.  Using the GRG nonlinear 

solver in Excel, a solution is reached within a few seconds, and the resultant analysis provides 

efficiency scores equal to one for all facilities.  No solution could be better, although other 

alternate solutions to the same problem do exist.  The input adjustment matrix provides 

recommendations for each DMU and each input that when re-implemented into the CCR DEA 

confirm all efficiency scores equal to one.  The new values for the inputs follow in Table 2.   

 

TABLE 2 
 

DMU FTEs  Supply Expenses  Available Bed Days 

A 310.10 134.60 118.9 

B 278.50 114.30 108.99 

C 165.60 131.30 66.02 

D 250.00 316.00 87.40 

E 206.40 151.20 103.39 

F 384.00 217.00 153.82 

G 530.10 770.80 215.00 

 

The analysis suggests that by changing available bed days for facilities (which means adding or 

removing beds), the efficiency scores might be improved the most.  The optimality attained for 

this problem is only one of several optimal solutions available.  For example, using the 

CONOPT Solver in GAMS resulted in an alternate (but similar) solution set.  Detailing multiple 

solution sets that result in maximizing the objective function is necessary to provide decision 

support. 

 

REAL-WORLD EXAMPLE 

 

With this simple example in hand, we move to the analysis of sixteen military medical facilities 

with inputs and outputs that were deemed important to decision-makers in evaluating efficiency.  

The data are from 2003 (as to be non-sensitive in nature), and the facilities were chosen from 24 

facilities because they are largely homogenous.  The inputs that could be manipulated included 

the funding stream (COST) and the FTEs (FTE).  A non-discretionary input was the enrollment 

population supported (ENROLL). The outputs of interest included weighted workload metrics 

(inpatient relative weighted product known as RWP and outpatient relative value units known as 

RVU), a prevention metric (PREV), a satisfaction metric (SAT), and an access metric (ACC).  

These three metrics were scaled measures on [0,100].  The original data are shown in Table 3. 

 

TABLE 3 

 

 

ENROLL FTE COST RWP RVU PREV ACCESS SAT 

H1 14.81 7.13 56.66 7.05 112.21 83.28 70.55 73.19 

H2 23.09 9.86 72.67 6.51 182.38 83.40 66.24 71.55 

H3 68.40 17.66 163.99 21.74 372.06 78.89 57.29 63.02 

H4 80.62 17.20 169.14 14.14 476.48 89.14 67.39 73.63 



H5 49.84 15.25 125.44 16.87 314.98 85.65 65.72 72.02 

H6 38.13 13.04 130.23 10.41 229.08 84.82 65.61 69.87 

H7 32.87 8.68 67.25 10.74 187.00 79.70 67.86 70.83 

H8 12.74 6.34 53.16 7.07 85.10 84.60 67.49 73.67 

H9 23.95 11.73 95.60 14.31 253.72 83.15 70.59 74.81 

H10 14.93 6.42 52.37 0.96 76.53 89.44 65.40 69.85 

H11 47.87 16.91 129.16 21.93 339.66 85.73 69.30 74.35 

H12 31.50 8.81 71.98 3.01 153.56 82.32 60.92 69.81 

H13 22.99 11.13 99.60 6.71 252.20 85.63 74.52 80.99 

H14 31.39 12.73 92.53 14.87 298.59 83.97 70.48 75.62 

H15 10.70 6.22 38.08 3.03 60.06 80.83 64.76 72.84 

H16 63.40 14.71 114.29 14.86 327.31 80.24 62.89 68.53 

 

For this more complex analysis, we ran variable returns to scale (VRS) DEA analysis, as such an 

analysis reasonably assumes that the production frontier is not necessarily linear. Assuming that 

enrollment is a nondiscretionary input, facilities with inefficiency scores less than 1.0 included 

H1 (.851), H2 (.928), H5 (.948), H7 (.779), H8 (.951), H9 (.850), H11 (.998), H13 (.959), H14 

(.842), and H16 (.974).    

 

Running the data in the AOM resulted in all facilities achieving efficiency scores of 1.0 by 

changing funding (COST) and FTEs as shown in Table 4.  What is remarkable about these 

results is that the changes, while significant, are not so severe as to require side constraints.  It is 

possible that the auto-optimization could recommend the elimination of FTEs or funding from a 

facility, which would require the use of side constraints.  As an example, alternate formulations 

that we have run have included a maximum reduction of X% for any input, so as to prevent 

massive system changes.  But with this real-world data, the solution set required only (relatively) 

minor changes to FTEs and budgeting. 

 

TABLE 4 

 

 ORIGINAL COST NEW COST ORIGINAL FTE NEW FTE 

H1 56.66 53.41 7.13 7.94 

H2 72.67 72.63 9.86 9.64 

H3 163.99 163.98 17.66 16.35 

H4 169.14 174.81 17.20 17.47 

H5 125.44 125.43 15.25 13.33 

H6 130.23 130.21 13.04 10.28 

H7 67.25 64.98 8.68 10.42 

H8 53.16 53.16 6.34 6.16 

H9 95.60 95.59 11.73 11.62 

H10 52.37 52.38 6.42 6.30 

H11 129.16 129.15 16.91 17.00 

H12 71.98 71.92 8.81 7.56 

H13 99.60 99.61 11.13 10.55 

H14 92.53 92.57 12.73 19.33 



H15 38.08 38.10 6.22 5.39 

H16 114.29 114.25 14.71 14.48 

 

Again, we note that multiple solutions are likely to be available for many problems.  

Investigating these multiple optimal solutions is something that is important in order to provide 

quality decision support. 

 

SUMMARY AND CONCLUSIONS 

 

By exploring the similarities between optimization methods for handling multiple objective 

problems, a related non-linear, multi-objective, resource allocation-based optimization program 

that allows for the adjustment of resources (system inputs) either with or without decision maker 

input was generated, programmed and solved on a representative data set.  The utility for this 

type of decision support model to be employed in support of resource allocations for large, 

centrally funded hospital systems is self-evident. As demand for health services increases, the 

need for efficient allocation models based on competing objectives will become increasingly 

more important, and models similar to those proffered here will aid decision-makers’ efforts. 

 

This effort is not complete.  Clearly, nonlinearity poses unique challenges for obtaining global 

optimality.  The examples here are small and straightforward.  That said, there is utility in being 

able to investigate reallocation strategies using automated methods. For instance, we are now 

beginning the use of multi-start genetic algorithms for gathering families of solutions that 

optimize over the problem space in order to provide decision makers arrays of possible solutions.  
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