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Abstract

In this paper, we study option pricing in an incomplete market with stochastic

volatility. We consider constant relative risk aversion (CRRA) preference. Under the

power utility preference, we show that the fair price of the option depends on the ratio

of the position in options holding to the wealth of the portfolio. Furthermore, we

give an explicit expression for the market-price-of-risk. In addition, we show numerical

examples to illustrate various points.
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1 Introduction

We study the price of option under constant relative risk aversion (CRRA) preferences for

the case in which the underlying security has stochastic volatility. The most important

phenomena are that the underlying dynamic equations are nonlinear and the option price

depends on the position of the portfolio.

The path-breaking work of Black and Scholes (1973) on option price has wide applica-

tions in modern finance. This theory is for pricing options in a complete market. However,

the empirical study on financial data showed the stochastic feature of volatility. We study

∗Corresponding author: mazq@cityu.edu.hk. The authors would like to thank Dr. Yang for his helpful

discussions and suggestions. The work of Q. Zhang was supported by the Research Grants Council of the

Hong Kong Special Administrative Region, China, project CityU 103712. The work of J. Han and Y. Zhai

were supported by National Basic Research Program of China (973 Program) 2007CB814901.

1



option pricing when the underlying stock prices evolve with stochastic volatility in this pa-

per. A model for stochastic volatility was first introduced by Hull and White (1987) and

further major advances in stochastic volatility models can be found in Stein and Stein (1991)

and Heston (1993). Stochastic volatility models can explain the patterns that are missing

from the Black-Scholes’ theory for pricing options in complete markets, such as “smile” and

“term structure” of implied volatility. Stochastic volatility leads to an incomplete market

which causes difficulties in theoretical study. In a financial market with stochastic volatil-

ity, the classical dynamic replication strategy which is critical in Black-Scholes theory is

no longer possible. Arbitrage-free pricing approach does not give a unique answer for the

option prices because many martingale probability measures exist. Selecting a particular

measure is equivalent to specifying the market price of risk.

Expected utility maximization is one of the approaches to determine the market price

of risk. Under this frame work, Hodges and Neuberger (1989) first introduced a notation of

indifferent price. Namely, at this particular price, whether or not to purchase additional one

unit of the option is indifferent in terms of expected utility. This approach has been adopted

by many studies on stochastic volatility in the literatures (Musiela and Zariphopoulou

(2001a,b), Stoikov and Zariphopoulou (2005)). A nice summary of main results on stochastic

volatility can be found in the book of Lewis (2000). Davis (1999) suggested the notation of

fair price, which is the utility indifferent price of holding an infinitesimal position in option.

Yang (2006) and Stoikov (2006) have further extended the concepts of fair price and

indifferent price to a portfolio. They have carried out a detailed study of pricing option

in a stochastic volatility setting under exponential utility function and demonstrated many

interesting features. The exponential utility function has the property that the price of

the option is independent of the wealth. This gives advantages that the partial differential

equations are simpler. It has been shown that, based on the exponential utility function,

there is maximum amount of wealth allocated in option market for his/her portfolio. No

matter how big the portfolio is, the investor will never allocate more wealth than this

maximum. This is the same phenomenon observed in the optimal strategy for the pure stock

investment problem based on the expected exponential utility maximization: an investor’s

allocation of wealth in stock market will never be larger than a constant no matter how

rich he/she is. Intuitively, one would expect that a wealthier investor will have more wealth

invested in stock than an investor with less wealth. The CRRA utility function provides

an optimal investment strategy which is consistent with this intuition. For the pure stock

investment problem, the optimal strategy based on the CRRA utility function has the

property that if the wealth of person A is λ times larger than that of person B, person A’s
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optimal holding in stock will be λ times larger than that of person B as well. It has been

shown that such property also hold in the stochastic volatility environment (see Liu, 2007).

This motivates us to study option pricing with stochastic volatility based on CRRA utility

function.

We study option price with stochastic volatility under CRRA utility function. We show

that the fair price and the utility-indifference price of options depend on the current holding

of risky assets in the portfolio and the current wealth. Our study showed that the option

based power utility function still has the same important features demonstrated in the

approach based exponential utility function (Yang, 2006). Namely, we can derive a set of

nonlinear equations for the option price and give an explicit expression for the market-price-

of-risk. We explain how the option price depends on the position of the portfolio.

This paper is organized as follows. In Section 2, we derive the dynamic equations

which govern the price of options with stochastic volatility based on power utility function.

Numerical examples are given in Section 3. Section 5 is for conclusion.

2 Theoretical formulation

In this section, we give a theoretical formulation for pricing European options on an un-

derlying stock with stochastic volatility. Such a financial market is an incomplete market

since one can not perfectly replicate the payoff of the option. For pricing options in in-

complete markets, arbitrage argument will not uniquely determine the prices of options.

An additional criteria is needed for pricing options. Here, we will follow the approach of

maximization of expected power utility function. More specifically, we will derivate a set of

nonlinear partial differential equations which determine the prices of European options.

We consider a financial market which consists of N + 2 instruments: a riskless money

market,

dPt = rPt dt, (1)

where Pt is the value of the riskless instrument at time t and r is a constant interest rate;

a risky stock of price St at time t modeled by

dSt = µ(vt)St dt+
√
vtSt dB

S
t , (2)

where µ is the drift, and v
1

2 is the stochastic volatility governed by the Heston’s volatility

process

dv = κ(θ − v)dt+ ξv
1

2dBv, (3)
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where θ, κ and ξ are constants, and θ is the mean of the variance v; and N European options

F i(t, St, vt,Ki), i = 1, 2, · · · , N , written on the stock S, with a payoff F i(Ti, STi
,Ki). Here

Ki is the strike price and Ti is the maturity date of the option F i. In Eqs. (2) and (3), the

two standard Brownian motions dBS
t and dBv

t are correlated (dBS
t dB

v
t = ρ dt), and a, b, µ

and ρ are functions of t, St and vt.

We assume that the stock may pay a continuous dividend yield q, and that the trading

allows unlimited lending and borrowing. Consider a portfolio of wealth Wt, which holds n0

shares of stock and ni units of option F
i at time t, then the change of wealth dWt during

the infinitesimal time interval [t, t+ dt] is

dWt = n0 dSt + qn0St dt+
N
∑

i=1

nidF
i + r

(

Wt − n0St −
N
∑

i=1

niF
i

)

dt. (4)

For the sake of simplifying the mathematical expressions to be presented in this paper,

we introduce discounted financial instruments and discounted wealth:

s = e−rtSt, p = e−rtPt, ki = e−rTiKi,

w = e−rtWt, f i(t, s, v) = e−rtF i(t, St, v).
(5)

Then from Eqs. (2), the stochastic equation for the discounted stock is

ds = ν(v)s dt+ v
1

2 s dBs, (6)

where ν = µ− r is the discounted drift. The discounted budget equation becomes

dw = n0 ds+ qn0s dt+

N
∑

i=1

ni df
i. (7)

Our goal is, for given t, s and v, to determine the price of the discounted options f i,

i = 1, 2, · · · , N . We will follow the approach of maximization of expected wealth under the

power utility given by

U [w(T )] =
1

γ
[w(T )]γ (8)

to determine option prices. Here the dimensionless parameter γ models an investor attitude

towards risk. γ < 1 is for a risk aversion investor and γ = 1 is for a risk neutral investor.

The smaller γ is, the more risk averse the investor is. One can replace wγ by wγ − 1

in the definition of power utility function, since all utility functions related by an affine

transformation are equivalent. Then the limit γ → 0 corresponds to the log utility function,

U(w) = log(w). The relative risk aversion function of the power utility function is 1 − γ,

thus the power utility function is also called the constant relative risk aversion (CRRA)
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utility function. We assume that the wealth never becomes negative. This constraint is

satisfied automatically for power utility functions and needs not be imposed separately.

Since we expect that, based on the power utility function, a person’s optimal holding

in i-th option will be proportional to his/her wealth, it will be more convenient to choose

m0 =
n0

w
and mi =

ni

w
(i = 1, 2, · · · , N), instead of n0 and ni, as control variables. In terms

of m0 and mi, the discounted budget equation Eq. (7) becomes

dw

w
= m0 ds + qm0s dt+

N
∑

i=1

mi df
i (9)

Applying Itô’s lemma to f i(t, s, v) gives

df i =
(

f it + νsf is + κ(θ − v)f iv +O2f
i
)

dt+ v
1

2 sf is dB
s
t + ξv

1

2 f iv dB
v
t (10)

where the second-order differential operator O2 is defined as

O2ψ(t, s, v)
.
=

1

2
vs2ψss +

1

2
ξ2vψvv + ρξvsψsv

The valuation function J , which is the maximized expected utility conditioned on the

current state information, is defined as

J(t, w, s, v)
.
= sup

m0,mi

E [U (wT )] . (11)

Obviously, the investment horizon T should be larger than the longest maturity date Ti.

An application of Hamilton-Jacobi-Bellman (HJB) equation to Eq. (11) gives

sup
m0,mi

LJ = 0. (12)

The conditions for optimality are
∂

∂m0
LJ = 0, (13)

and
∂

∂mi

LJ = 0. (14)

In Eqs. (12)-(14), the expression for LJ is extremely complicated and long. Following Yang

(2006), to make the expressions compact, we define a shorthand notation C(∗,∗) for the

coefficients in a stochastic differential equation,

dZt = C(Z,t) dt+ C(Z,x) dB
x
t + C(Z,y) dB

y
t + ...
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Thus, we have

LJ .
= Jt + C(s,t)Js + C(v,t)Jv + C(w,t)Jw

+
1

2
C2
(s,s)Jss +

1

2
C2
(v,v)Jvv + ρC(s,s)C(v,v)Jsv

+
1

2

[

C2
(w,s) + 2ρC(w,s)C(w,v) + C2

(w,v)

]

Jww

+
[

C(w,s) + ρC(w,v)

]

C(s,s)Jws +
[

ρC(w,s) + C(w,v)

]

C(v,v)Jwv

(15)

where the subscripts on J denote partial derivatives.

J is conjectured to have the form:

J =
1

γ
wγφ(t, s, v) (16)

Based on this functional form, after performing tedious manipulations, Eqs. (13), (14) and

(12) become the following three nonlinear partial differential equations respectively,

π = m0s =
1

1− γ

(

χ+ s
φs
φ

+ ρξ
φv
φ

)

−
(

s

N
∑

i=1

mif
i
s + ρξ

N
∑

i=1

mif
i
v

)

, (17)

f it −qsf is+O2f
i+

[

κ(θ − v)− ρχξv +
(

1− ρ2
)

ξ2v

(

φv
φ

− (1− γ)

N
∑

i=1

mif
i
v

)]

f iv = 0, (18)

1

φ
[φt + (χv − q)sφs + κ(θ − v)φv +O2φ] +

γv

2 (1− γ)

(

χ+ s
φs
φ

+ ρξ
φv
φ

)2

+
1

2
γ (1− γ)

(

1− ρ2
)

ξ2v

(

N
∑

i=1

mif
i
v

)2

= 0, (19)

for i = 1, 2, · · · , N , where χ = (ν(v)+ q)/v is assumed as constant. The final conditions for

f i and φ are

f i(Ti, s, v) = gi(Ti, sTi
) and φ (T, s, v) = 1 (20)

respectively, where the investment horizon T ≥ maxTi and g
i(sTi

) is the discounted payoff

of the option. We comment that the discounted current wealth w does not appear in

Eqs. (17)-(20). The prices of options in incomplete markets based maximization of power

utility function are determined by a set of coupled nonlinear PDEs (18) and (19) with the

final conditions given by Eq. (20).

Extensive studies show that the option price under incomplete market models with

stochastic volatility satisfies the following PDE

f it − qsf is + [κ(θ − v)− λξv
1

2 ]f iv +O2f
i = 0 (21)
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θ γ ξ κ χ ρ τ v̄ v

0.2500 -1.0000 0.5000 1.0000 1.0000 -0.5000 1.0000 0.2500 0.2500

Table 1: The base point in the parameter space. ρ = −0.5 is for correlated case and ρ = 0

is for uncorrelated case. τ = T − t is the time to the maturity date. v̄ and v denote,

respectively, the mean of the stationary distribution and the initial value of variance.

where λ called market-price-of-risk is exogenously given. Our basic equation (18) for option

can also be written in the form of Eq. (21) with λ endogenously given by

λ(t, s, v) = ρχv
1

2 −
(

1− ρ2
)

ξv
1

2

(

φv
φ

− (1− γ)
N
∑

i=1

mif
i
v

)

. (22)

Yang (2006) showed that, based on the exponential utility function, φ and consequently λ,

depends on the position of the portfolio. In next section, we will show that the same feature

occurs in our approach.

3 Numerical study

In this section, we present results of numerical study of option prices with stochastic volatil-

ity. The numerical results are determined by the solving nonlinear partial differential

Eqs. (18)-(19) with the final conditions given by Eqs. (20). We will only consider European

vanilla calls with discounted strikes k and time to maturities τ . We choose initial wealth

w0 as the unit for wealth. Then the control variables m0w0 =
n0

w
w0 and m1w0 = n1

w
w0 are

dimensionless. The parameters used in numerical computation are shown in Table 1. For

the correlated case we choose ρ = −0.5 and for the uncorrelated case we choose ρ = 0. For

the sake of simplicity is our illustration, s is set to 1. In addition, the dividend rate q is

set to zero, because the effect of the dividend rate q can be eliminated by simple change of

variables. The value of v is set to 0.25.

We investigate the impact of the at-the-money call option, which means that there is

only one type of options with the strike price k = s. In Fig. 1, the dimensionless price of call

option f/s is plotted against the position m for correlated and uncorrelated cases. From

Fig. 1, it is clear that the option price is a decreasing function of the option’s position m in

the portfolio. Figure. 1 shows that adding more position in option to the portfolio lowers

the fair price of the option; conversely reducing position in option raises the fair price. This

is consistent with the practice in option trading.
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Figure 1: The option prices are plotted against the position m for both correlated and

uncorrelated cases. It shows that the option price f depend on the position m.

4 Conclusions

In complete market, the option prices are determined by Black-Scholes formulae, which are

independent of the position of a portfolio in options. It has been shown that under the

exponential utility function (Yang, 2006), the option prices depend on the position of the

options. In this paper, we show that this feature is also true for the power utility function.
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