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Abstract

There are a number of important applications in which onetidestify behavioral changes
in data. We will study the classical change-point problerwimich one must estimate the lo-
cation of a change in behavior from a given data set. In the itewhich the statistical errors
are independent, the problem has been widely studied anel gxésts a wide literature that
spans a number of distinct fields. On the other hand, for dasesich there is dependence
in the statistical errors, the standard techniques thabeapplied in the independent case are
not appropriate and there are much fewer results in thafitez. In recent years, the impor-
tance of effects associated with dependence in data hasi@encompletely understood and
it has become increasingly clear that dependence can Idaddamentally different behavior
than is observed in problems with independent data. Thisiésih a number of applications
relating to financial data in which dependence can play &atitole in determining the price
dynamics and hedging strategies. It is also of crucial irigmme in telecommunications data.
In this work, we will discuss the role that dependence plalgsmattempting to identify a sin-
gle change point in a continuous process via discrete ohseng and consider how increasing
the frequency of the observations affects the accuracyeofi¢hection process.

There has been extensive work on the change-point probldrawthors from a number of
fields have made important contributions. This has led torabmr of varied techniques being
applied such as linear-model based approaches and norgidaapproaches. We refer the
reader to Basseville and Nikiforov (1993) for a comprehamseview of the subject.

It is probably true to say that most of the works have focusethe case of uncorrelated
processes or independent data. In particular, CarlstéiB8]lstudied sequences in which



the distribution is stationary on both sides of the jump asmhg a class of nhonparametric
estimators that are based on cumulative sums of empiristilwitions on either side of a
proposed change-point. A very general class of estimatassproposed by Dumbgen (1991)
who obtained a®,(n1) rate of convergence, whends the number of data points.

A method based on wavelets has been proposed by Wang (1968jinmate the location
of a discontinuity of a process in which the mean varies oogtiisly on either side of the
discontinuity. Wavelets were also used by Wah@l. (2001) who considered jump detection
in a heteroscedastic autoregressive model. In this caggokied the consistency the proposed
estimator.

Heavy correlations in the noise make the problem signifiganbre challenging. One of
the few results for long-range dependent sequences wasethtay Ben Harizt al. (2007)
who considered data with long-range dependence wherdatoores decay to zero algebraically
or faster. In this case they found that a natural family oifnestors (similar to that proposed
by Dumbgen) achieve th@,(n~?1) rate of convergence.

However, as far as we are aware, previous works cannot beedgplthe case in which
there is a finite interval and the sampling frequency tendsfioity. This is because the noise
in the processes in previous works have had either indepéentrements, weakly dependent
structure, or at least with correlations structures thad te zero.

When any continuous process is sampled at sufficiently ligguiency it is clear that cor-
relations between neighboring points must become imporEmerefore, the work presented
here is of importance to any application in which one muséded change in behavior in a
continuous random process. In this case, we show that thgidrel estimators (based on
cumulative sums) and wavelet-based estimators may noti@veansistent. We propose a dif-
ferent class of estimators that use local information awsvghat these estimators dramatically
outperform cumulative-sum-based estimators and wabaleéd estimators. In particular, we
focus on the case of Gaussian data to derive concrete bounthe @robability of predicting
an incorrect change-point location.

We consider a model for our underlying process of the foltmpfiorm

Yt = 61{t>9} +Xi, te [07T] ) (01)

whered is the size of the jump anfl € (0, T) is the location of the jump. In particular, we
make the assumption théX;),.,.t has a constant mean. Without loss of generality, we take
the mean to be zero. We further assume that the process hésltinéng property (that is
typically used to ensure that a process is continuous)

Ja > 0,C > 0, such that fos;t € [0,T], E(Xs—X;)?><Cls—t|°. (0.2)

In any application, one can only observe the process at & fininber of points. Without
loss of generality, we will seT = 1. Furthermore, we will restrict our attention to the case
of equally spaced observations of the following fagm= T /n,...,t« = KT /n,...,t, = T. Using
the observationsy; )1<i<n , the task that we aim to accomplish is to estimate within Whic
interval [8,0+ 1/n[ the discontinuity in the process lies. We will adopt a lazedi version of
the cumulative-sum estimator of the following form

6= }mln (arg max{|Uk\}> (0.3)
with
Uk = k— k|—|—l% ku K. %—lYla k= 17 N 17 (04)



wherek; = max(1,k— L+ 1) andk, = min(k+L,N). Here,L is a window for a mean compar-
ison between two subsequences of sizene ends &t and the second starts fraka- 1. The
parametet can take values ranging from 11mo

We will show that this estimator dramatically outperformeditional cumulative-sum es-
timators, and show that if the information used by the estimi sufficiently localized, that
exponentially fast convergence can be achieved.
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